

TGS 2616-C00 - for the detection of Hydrogen

Features:

- * High selectivity to hydrogen
- * Small size and low power consumption
- * Uses simple electrical circuit

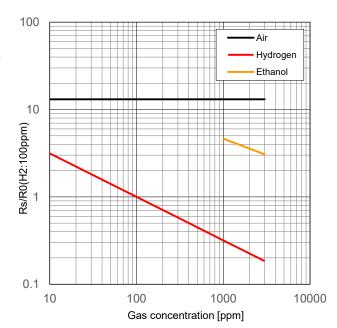
Applications:

- * Hydrogen detection for steel plant safety
- * Portable gas detectors
- * Leak detection for gas appliances
- * Hydrogen leak detectors for fuel cells
- * Safety measures for lithium-ion batteries

The sensing element is comprised of a metal oxide semiconductor layer formed on an alumina substrate of a sensing chip together with an integrated heater, and it is housed in a standard TO-5 package. In the presence of a detectable gas, the sensor's conductivity increases

depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

TGS2616-C00 has a newly developed sensing element which reduces the influence of interference gases such as alcohol, resulting in highly selective response to hydrogen.

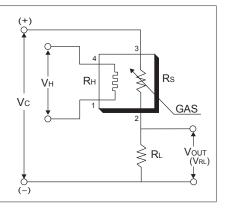


Sensitivity Characteristics:

The figure on the right represents typical sensitivity characteristics that are measured at standard test conditions. (see reverse side of this sheet for more details) The Y-axis indicates sensor resistance ratio Rs/Ro, where Rs and Ro are defined as below:

Rs = Sensor resistance in various gases and concentrations

Ro = Sensor resistance in 100 ppm of hydrogen


IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

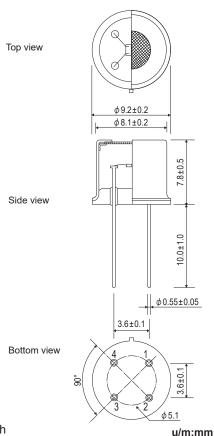
Basic Measuring Circuit:

The sensor requires two voltage inputs: heater voltage (VH) and circuit voltage (VC). The heater voltage (VH) is applied to the integrated heater in order to maintain the sensing element at a specific temperature which is optimal for sensing. Circuit voltage (VC) is applied to allow measurement of voltage VOUT(VRL) across a load resistor (RL) which is connected in series with the sensor.

A common power supply circuit can be used for both V_C and V_H to fulfill the sensor's electrical requirements. The value of the load resistor (R_L) should be chosen to optimize the alarm threshold value, keeping power dissipation (P_S) of the semiconductor below a limit of 15mW. Power dissipation (P_S) will be highest when the value of R_S is equal to R_L on exposure to gas.

Specifications:

Model number			TGS2616-C00	
Sensing principle			MOS type	
Standard package			TO-5 metal can	
Target gases			Hydrogen	
Typical detection range			30∼3000ppm	
Standard circuit conditions	Heater voltage	Vн	5.0±0.2V DC	
	Circuit voltage	Vc	5.0±0.2V DC	Ps≤15mW
	Load resistance	RL	variable	0.45kΩ min.
Electrical characteristics under standard test conditions	Heater resistance	Rн	approx 59Ω at room temp.	
	Heater current	Ін	56±5mA	
	Heater power consumption	Рн	280mW	VH = 5.0V DC
	Sensor resistance	Rs	$0.3 k\Omega \sim 3.0 k\Omega$ in 100ppm hydrogen	
	Sensitivity (change ratio of Rs)		0.25~0.60 in hydrogen	Rs (1000ppm) Rs (100ppm)
Standard test conditions	Test gas conditions		Hydrogen in air at 20±2°C, 65±5%RH	
	Circuit conditions		Vc = 5.0±0.01V DC VH = 5.0±0.05V DC	
	Preheating period before test		2 days	


The value of power dissipation (Ps) can be calculated by utilizing the following formula:

$$Ps = \frac{(Vc - V_{RL})^2}{Rs}$$

Sensor resistance (Rs) is calculated with a measured value of Voυτ(VRL) by using the following formula:

$$Rs = (\frac{V_C}{V_{RL}} - 1) x RL$$

Structure and Dimensions:

Pin connection:

- 1: Heater
- 2: Sensor electrode (-)
- 3: Sensor electrode (+)
- 4: Heater

For information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro USA Inc. All sensor characteristics shown in this brochure represent typical characteristics. Actual characteristics vary from sensor to sensor. The only characteristics warranted are those in the Specification table above.

Before purchasing this product, please read the Warranty Statements shown in our webpage by scanning this QR code.

FIGARO USA, INC.

5400 Newport Drive, Suite 19, Rolling Meadows, IL 60008 Phone: (847)-832-1701

URL: www.figarosensor.com

 $https://figarosensor.com/pdf/Figaro_USA_Sales_T\&C.pdf$